Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract For decades, community ecologists have examined how diversity varies with ecosystem productivity. Despite this long history, tests of hypothesized mechanisms, namely the interplay between environmental filtering, biotic interactions, and dispersal, are lacking, largely due to the intractability of using traditional approaches. Across a productivity gradient in a serpentine grassland (California, USA), for four annual plant species, we coupled local productivity estimates, occupancy surveys, and measures of persistence tested on transplants under natural conditions and when interactions with neighbors were experimentally reduced. We found a positive effect of productivity on diversity (i.e., the proportion of our focal species occupying a location) despite strong competition limiting species persistence in productive environments. Additionally, across species and for the community, we found a strong mismatch between species occupancy versus persistence, largely due to dispersal excess causing sink populations with negative growth rates. Our results suggest that diversity–productivity relationships can be largely driven by dispersal and its interactive effects with local biotic and abiotic conditions.more » « less
-
ABSTRACT Global change drivers alter multiple components of community composition, with cascading impacts on ecosystem stability. However, it remains largely unknown how interactions among global change drivers will alter community synchrony, especially across successional timescales. We analysed a 22‐year time series of grassland community data from Cedar Creek, USA, to examine the joint effects of pulse soil disturbance and press nitrogen addition on community synchrony, richness, evenness and stability during transient and post‐transient periods of succession. Using multiple regression and structural equation modelling, we found that nitrogen addition and soil disturbance decreased both synchrony and stability, thereby weakening the negative synchrony–stability relationship. We found evidence of the portfolio effect during transience, but once communities settled on a restructured state post‐transience, diversity no longer influenced the synchrony–stability relationship. Differences between transient and post‐transient drivers of synchrony and stability underscore the need for long‐term data to inform ecosystem management under ongoing global change.more » « less
-
Abstract Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale‐specific patterns, including different environmental drivers, diverse life histories, dispersal, and non‐stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long‐term drivers and may miss the importance of short‐term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems.more » « less
An official website of the United States government
